Google

>
 Haskell Core Libraries (base package)ParentContentsIndex
System.IO.Unsafe
Portability portable
Stability provisional
Maintainer libraries@haskell.org
Description
"Unsafe" IO operations.
Synopsis
unsafePerformIO :: IO a -> a
unsafeInterleaveIO :: IO a -> IO a
Unsafe IO operations
unsafePerformIO :: IO a -> a

This is the back door into the IO monad, allowing IO computation to be performed at any time. For this to be safe, the IO computation should be free of side effects and independent of its environment.

If the I/O computation wrapped in unsafePerformIO performs side effects, then the relative order in which those side effects take place (relative to the main I/O trunk, or other calls to unsafePerformIO) is indeterminate.

However, it is less well known that unsafePerformIO is not type safe. For example:

     test :: IORef [a]
     test = unsafePerformIO $ newIORef []
     
     main = do
     	      writeIORef test [42]
     	      bang \<- readIORef test
     	      print (bang :: [Char])

This program will core dump. This problem with polymorphic references is well known in the ML community, and does not arise with normal monadic use of references. There is no easy way to make it impossible once you use unsafePerformIO. Indeed, it is possible to write coerce :: a -> b with the help of unsafePerformIO. So be careful!

unsafeInterleaveIO :: IO a -> IO a
unsafeInterleaveIO allows IO computation to be deferred lazily. When passed a value of type IO a, the IO will only be performed when the value of the a is demanded. This is used to implement lazy file reading, see hGetContents.
Produced by Haddock version 0.4